Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution
نویسندگان
چکیده
In this paper a new generalization of the hyper-Poisson distribution is proposed using the Mittag-Leffler function. The hyper-Poisson, displaced Poisson, Poisson and geometric distributions among others are seen as particular cases. This Mittag-Leffler function distribution (MLFD) belongs to the generalized hypergeometric and generalized power series families and also arises as weighted Poisson distributions. MLFD is a flexible distribution with varying shapes and has a unique mode at zero or it is unimodal with one/two non-zero modes. It can be under-, equior overdispersed. Various distributional properties like recurrence relation for probability mass function, cumulative distribution function, generating functions, formulas for different type of moments, their recurrence relations, index of dispersion and its classification, log-concavity, reliability properties like survival, increasing failure rate, unimodality, and stochastic ordering with respect to hyper-Poisson distribution are discussed. A particular case of the distribution is shown to arise as the steady state probability of a queuing system under state dependent service rate. The distribution has been found to fare well when compared with the hyper-Poisson and COM-Poisson type negative binomial distributions in its suitability in empirical modeling of differently dispersed count data. It is therefore expected that the proposed MLFD with its interesting features and flexibility will be a useful addition as a model for count data.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملA fractional generalization of the Poisson processes
It is our intention to provide via fractional calculus a generalization of the pure and compound Poisson processes, which are known to play a fundamental role in renewal theory, without and with reward, respectively. We first recall the basic renewal theory including its fundamental concepts like waiting time between events, the survival probability, the counting function. If the waiting time i...
متن کاملAutoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کاملRenewal processes of Mittag - Leffler and Wright type
After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each oth...
متن کاملOpial–type Inequalities for Fractional Integral Operator Involving Mittag––leffler Function
In this paper we give generalization of Opial-type inequalities by using generalized fractional integral operator involving generalized Mittag–Leffler function. We deduce some results which already have been proved. Also we consider n -exponential convexity of some non-negative differences of inequalities involving Mittag-Leffler function and deduce their exponential convexity and log-convexity.
متن کامل